Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20236544

ABSTRACT

Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Swine , SARS-CoV-2/genetics , Nigeria/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Pandemics , RNA, Viral/genetics , Zoonoses/epidemiology , Animals, Domestic , Goats
2.
Curr Opin Infect Dis ; 34(5): 385-392, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-2323925

ABSTRACT

PURPOSE OF REVIEW: The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS: The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY: Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Pandemics/prevention & control , Zoonoses/epidemiology , Animals , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2/pathogenicity
3.
Emerg Infect Dis ; 28(12): 2425-2434, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2089724

ABSTRACT

SARS-CoV-2 likely emerged from an animal reservoir. However, the frequency of and risk factors for interspecies transmission remain unclear. We conducted a community-based study in Idaho, USA, of pets in households that had >1 confirmed SARS-CoV-2 infections in humans. Among 119 dogs and 57 cats, clinical signs consistent with SARS-CoV-2 were reported for 20 dogs (21%) and 19 cats (39%). Of 81 dogs and 32 cats sampled, 40% of dogs and 43% of cats were seropositive, and 5% of dogs and 8% of cats were PCR positive. This discordance might be caused by delays in sampling. Respondents commonly reported close human‒animal contact and willingness to take measures to prevent transmission to their pets. Reported preventive measures showed a slightly protective but nonsignificant trend for both illness and seropositivity in pets. Sharing of beds and bowls had slight harmful effects, reaching statistical significance for sharing bowls and seropositivity.


Subject(s)
COVID-19 , Cat Diseases , Humans , Animals , Dogs , Cats , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/veterinary , Idaho/epidemiology , Washington/epidemiology , Family Characteristics , Pets , Cat Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL